

Question Paper

B.Sc. General Examinations 2021

(Under CBCS Pattern)

Semester - III

Subject : MATHEMATICS

Paper : SEC 1 - T

Full Marks : 40

Time: 2 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

[THEORY OF EQUATIONS]

(Theory)

Group-A

Answer any *three* of the following questions :

12×3=36

1. (i) If $x^4 + px^2 + qx + r$ has a factor of the form $(x - \alpha)^2$, show that $8p^3 + 27q^2 = 0$ and $p^2 + 12r = 0$.

(ii) Prove that the equation $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} = 0$ can not have a multiple root.

(iii) State Descartes' rule of sign. Apply it, find the number of positive and negative roots of the equation $x^4 + 4x^3 - x^2 - 10x + 3 = 0$.

2. (i) If the equation
$$ax^3 + 3bx^2 + 3cx + d = 0$$
 has two equal roots. Prove that $\frac{1}{2}(bc - ad)$

$$(bc-ad)^2 = 4(b^2-ac)(c^2-bd)$$
 and the equal root is $\frac{\overline{2}(bc-ad)}{ac-b^2}$.

(ii) If the polynomial $x^n - qx^{n-m} + r$ has a factor of the form $(x - \alpha)^2$, show that

$$\frac{q}{n}(n-m)\Big|^n = \left|\frac{r}{n}(n-m)\right|^m.$$
4

(iii) State and proof that an algebraic equation of degree has *n* roots and no more. 4

3. (i) If $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ be the roots of the equation $x^n + nax + b = 0$. Prove that $(\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)...(\alpha_1 - \alpha_n) = n(\alpha_1^{n-1} + a).$ 4

(ii) If α be a multiple root of order 3 of the equation $x^4 + bx^2 + cx + d = 0 (d \neq 0)$, show that $\alpha = -\frac{8d}{3c}$.

(iii) Solve the equation $3x^4 + 20x^3 - 70x^2 - 60x + 27 = 0$, the roots being in Geometric Progression. 4

(i) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of

(a)
$$\sum \alpha^2 \beta^2$$
 (b) $\sum (\beta + \gamma - \alpha)^3$

- 4
- (ii) If the equation $x^4 + px^3 + qx^2 + rx + s = 0$ has roots of the form $\alpha \pm i\alpha$, $\beta \pm i\beta$ where α , β are real, prove that $p^2 - 2q = 0$ and $r^2 - 2qs = 0$ and hence solve the equation $x^4 + 4x^3 + 8x^2 - 24x + 36 = 0$.

- 5. (i) If α , β , γ be the roots of the equation $x^3 + qx + r = 0$, find the equation whose roots are $\frac{\beta}{\gamma} + \frac{\gamma}{\beta}$, $\frac{\gamma}{\alpha} + \frac{\alpha}{\gamma}$, $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$.
 - (ii) If α be a root of the equation $x^3 3x 1 = 0$, prove that the other roots are $\alpha^2 \alpha 2, \ 2 \alpha^2$.
 - (iii) Prove that the equation $(x+1)^4 = a(x^4+1)$ is a reciprocal equation if $a \neq 1$ and solve it when a = -2.

6. (i) Solve the equation
$$x^3 - 3x - 1 = 0$$
.

(ii) If
$$\alpha$$
, β , γ be the roots of the equation $x^3 - 3qx + r = 0$, show that
 $(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha) = \pm \sqrt{27(4q^3 - r^2)}$.

(iii) Solve the equation $x^4 - 10x^3 + 35x^2 - 50x + 24 = 0$.

Group-B

Answer any *two* of the following questions :

1. (i) Solve the equation $2x^3 - x^2 - 18x + 9 = 0$ if two of the roots are equal in magnitude but opposite in sign. 2

(ii) Expand
$$f(x) = x^4 - 4x^3 + 3x^2 + 3x + 7$$
 as a polynomial in $x - 1$.

(iii) State fundamental theorem of classical algebra.

(iv) Prove that the roots of the equation
$$\frac{1}{x-1} + \frac{2}{x-2} + \frac{3}{x-3} = x$$
 are all real. 2

4

4

 $2 \times 2 = 4$

2

2

OR

[LOGIC AND SETS]

(Theory)

	Group-A						
	Answer any <i>three</i> of the following questions : $12 \times 3 = 36$						
1.	(i)	If ρ be an equivalence relation on a set <i>S</i> and $a, b \in S$. Then prove that $cl(a) = cl(b)$					
		If and only if $a \rho b$.					
	(ii)	Find the equivalence classes determined by the equivalence relation ρ on \mathbb{Z} defined by " $a \rho b$ if and only $a - b$ is divisible by 5" for $a, b \in \mathbb{Z}$.					
	(iii)	An equivalence relation ρ on a set <i>S</i> determines a partition of <i>S</i> . Conversely, each partition of <i>S</i> yields an equivalence relation on <i>S</i> .					
2.	(i)	State and proof De Morgan's laws. 4					
	(ii)	Define power set. If $S = \{1, 2, 3\}$, then find the power set of S. 4					
	(iii)	Define cartesian product of a set. Then prove that					
		$A \times (B \cap C) = (A \times B) \cap (A \times C) $ 4					
3.	(i)	Examine whether the followings are is a tautology or not :					
		$\left(\left(A \Longrightarrow \left(B \lor C \right) \right) \lor \left(A \Longrightarrow B \right) \right)$					
		$\left(\left(A \Leftrightarrow \left((-B) \lor C\right)\right) \Rightarrow \left((-A) \Rightarrow B\right)\right)$ 8					
	(ii)	Prove that if <i>B</i> and $(B \Rightarrow C)$ are tautologies, then so on <i>C</i> . 4					
4.	(i)	Defin a relation on a set. A relation ρ on the set z is given by					
		$\rho = \{(a, b) \in z \times z : ab > 0\}.$ Examine if it is equivalence relation or not. 1+4					
	(ii)	Let A, B, C are subsets of a universal set S. If $A \cup B = A \cup C$ and $A \cap B = A \cap C$, then prove that $B = C$.					

(iii)	For any three subsets A, B, C of a universal set S, prove $A \cap B = (A \cup B)\Delta(A\Delta B).$	that 4
(i)	What is biconditional statement? And define Associated Implications.	3+3
(ii)	Draw the truth table and prove that :	
	(a) $\sim (p \wedge q) \equiv \sim p \lor \sim q$	
	(b) $(p \lor q) \Rightarrow r \equiv (p \Rightarrow r) \land (q \Rightarrow r)$	3+3
(i)	If x^2 is odd, then prove that x must be odd.	2
(ii)	$p: \forall \text{ real numbers } x, \cos x + \sin x = 1$	
	~ $p:\exists$ a real number x such that $\cos x + \sin x \neq 1$, prove that ~ p is true.	4
(iii)	Use method of contradiction prove that :	
	(a) If n^3 is odd, then <i>n</i> is odd, <i>n</i> being a positive integer.	
	(b) If x and y are integers such that xy^2 is even, then at least one of x, y is even.	
		3+3
	Group-B	
Ansv	wer any <i>two</i> of the following questions : 2	×2=4
(i)	What are quantifiers in predicating logic?	
(ii)	Prove that the union of two reflexive relations on a set is a reflexive relation.	
(iii)	Write contrapositive statement for "If he has the courage, he will win."	
(iv)	Define conditional statement with truth table.	
	 (ii) (i) (i) (i) (ii) (iii) (iii) (iv) 	 (ii) For any three subsets A, B, C of a universal set S, prove A ∩ B = (A ∪ B) ∆ (A ∆ B). (i) What is biconditional statement? And define Associated Implications. (ii) Draw the truth table and prove that : (a) ~ (p ∧ q) = ~ p ∨ ~ q (b) (p ∨ q) ⇒ r ≡ (p ⇒ r) ∧ (q ⇒ r) (i) If x² is odd, then prove that x must be odd. (ii) p : ∀ real numbers x, cos x + sin x = 1 ~ p:∃ a real number x such that cos x + sin x ≠ 1, prove that ~ p is true. (iii) Use method of contradiction prove that : (a) If n³ is odd, then n is odd, n being a positive integer. (b) If x and y are integers such that xy² is even, then at least one of x, y is even. Group-B Answer any <i>two</i> of the following questions : 2 (i) What are quantifiers in predicating logic? (ii) Prove that the union of two reflexive relations on a set is a reflexive relation. (iii) Write contrapositive statement for "If he has the courage, he will win." (iv) Define conditional statement with truth table.

		OR	
		[BOOLEAN ALGEBRA]	
		(Theory)	
		Group-A	
	Ansv	wer any <i>three</i> of the following questions : $12 \times 3 = 3$	36
1.	(i)	State the duality principle of Boolean algebra.	2
	(ii)	Show that the number of elements in a finite Boolean algebra is of power of 2.	3
	(iii)	Prove that there does not exist a Boolean algebra containing only three elements.	4
	(iv)	Prove that in a bounded distributive lattice an element can have at most or complement.	ne 3
2.	(i)	Identify extreme elements in the following posets : 3-	+3
		(a) The divisors of 60, ordered by divisibility.	
		(b) The set $\{a, b, c, d, e, f, g, h\}$, ordered like the subsets of $\{0, 1, 2\}$.	
	(ii)	Let $(D_{12},)$ denote the poset of all divisors of 12. Show that D_{12} is a lattice be drawing out the Hasse diagram for the poset and then verifying that each pair divisors has both a meet and join.	by of 6
3.	(i)	If <i>f</i> is a function of three Boolean variables <i>x</i> , <i>y</i> , <i>z</i> defined by $f(x, y, z) = xy + y$, ' .
		Express f in disjunctive normal form.	5
	(ii)	Show that a lattice is distributive iff following identity holds :	4
		$(p \cap q) \cup (q \cap r) \cup (r \cap p) = (p \cup q) \cap (q \cup r) \cap (r \cup p)$	
	(iii)	Prove that a lattice is modular iff it satisfies $p \cup (q \cap (p \cup r)) = p \cup (r \cap (p \cup q))$))
			3

4.	(i)	Define modular lattices and give an example of it.	2			
	(ii)	In a Boolean algebra <i>B</i> , prove that for <i>a</i> , <i>b</i> , <i>c</i> in <i>B</i> .	3			
		(a+b+c).(a'+b+c).(a+b'+c).(a+b+c') = (b+c).(c+a).(a+b)				
	(iii)	Describe the distinctions between Boolean algebra and the algebra of renumbers.	al 4			
	(iv)	Prove that in a Boolean algebra, $a + a = a$ and $a \cdot a = a$.	3			
5.	(i)	Use NAND gate alone to represent the function $f(a, b, c, d) = (a \land b) \lor (c \land d)$.	3			
	(ii)	Using Karnaugh Map, minimize the following boolean function				
		$F(A, B, C, D) = \sum m(0, 1, 2, 5, 7, 8, 9, 10, 13, 15).$	6			
	(iii)	Draw the truth table for the Boolean function defined as				
		$f(x_1, x_2, x_3) = x_1 \wedge (\sim x_2 \vee x_3).$	3			
6.	(i)	Draw the circuit to realize the following Boolean function with simplified circuits				
		$(x+\overline{y}+z)(x+yz)+\overline{z}w+w(\overline{y}+z).$	4			
	(ii)	Find the function to represent the following circuit in simplified form				
		$- \begin{bmatrix} x - y \\ \overline{x} - y \\ x - \overline{y} \end{bmatrix} - \begin{bmatrix} \overline{x} \\ \overline{y} \end{bmatrix} - \begin{bmatrix} \overline{x} \\ \overline{y} \end{bmatrix}$	4			
	(iii)	Show that the current will flow through the network by the Boolean function	m			
		$\left[xy\left(\overline{x}y+x\overline{y}\right)\right].$	4			
Group-B						
	Ansv	wer any <i>two</i> of the following questions : $2 \times 2 =$	-4			
1.	(i)	What are the basic digital logic gates?				

